ChatAI21
Overview
This notebook covers how to get started with AI21 chat models. Note that different chat models support different parameters. See the AI21 documentation to learn more about the parameters in your chosen model. See all AI21's LangChain components.
Integration details
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatAI21 | langchain-ai21 | ❌ | beta | ✅ |
Model features
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ |
Setup
Credentials
We'll need to get an AI21 API key and set the AI21_API_KEY
environment variable:
import os
from getpass import getpass
if "AI21_API_KEY" not in os.environ:
os.environ["AI21_API_KEY"] = getpass()
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
Installation
!pip install -qU langchain-ai21
Instantiation
Now we can instantiate our model object and generate chat completions:
from langchain_ai21 import ChatAI21
llm = ChatAI21(model="jamba-instruct", temperature=0)
Invocation
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
Chaining
We can chain our model with a prompt template like so:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
Tool Calls / Function Calling
This example shows how to use tool calling with AI21 models:
import os
from getpass import getpass
from langchain_ai21.chat_models import ChatAI21
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
from langchain_core.tools import tool
from langchain_core.utils.function_calling import convert_to_openai_tool
if "AI21_API_KEY" not in os.environ:
os.environ["AI21_API_KEY"] = getpass()
@tool
def get_weather(location: str, date: str) -> str:
"""“Provide the weather for the specified location on the given date.”"""
if location == "New York" and date == "2024-12-05":
return "25 celsius"
elif location == "New York" and date == "2024-12-06":
return "27 celsius"
elif location == "London" and date == "2024-12-05":
return "22 celsius"
return "32 celsius"
llm = ChatAI21(model="jamba-1.5-mini")
llm_with_tools = llm.bind_tools([convert_to_openai_tool(get_weather)])
chat_messages = [
SystemMessage(
content="You are a helpful assistant. You can use the provided tools "
"to assist with various tasks and provide accurate information"
)
]
human_messages = [
HumanMessage(
content="What is the forecast for the weather in New York on December 5, 2024?"
),
HumanMessage(content="And what about the 2024-12-06?"),
HumanMessage(content="OK, thank you."),
HumanMessage(content="What is the expected weather in London on December 5, 2024?"),
]
for human_message in human_messages:
print(f"User: {human_message.content}")
chat_messages.append(human_message)
response = llm_with_tools.invoke(chat_messages)
chat_messages.append(response)
if response.tool_calls:
tool_call = response.tool_calls[0]
if tool_call["name"] == "get_weather":
weather = get_weather.invoke(
{
"location": tool_call["args"]["location"],
"date": tool_call["args"]["date"],
}
)
chat_messages.append(
ToolMessage(content=weather, tool_call_id=tool_call["id"])
)
llm_answer = llm_with_tools.invoke(chat_messages)
print(f"Assistant: {llm_answer.content}")
else:
print(f"Assistant: {response.content}")
API reference
For detailed documentation of all ChatAI21 features and configurations head to the API reference: https://python.langchain.com/api_reference/ai21/chat_models/langchain_ai21.chat_models.ChatAI21.html
Related
- Chat model conceptual guide
- Chat model how-to guides